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Abstract
The theoretical description of chemical reactions was until recently limited to a ‘static’
approach in which important parameters such as the rate constant are deduced from the local
topology of the potential energy surface close to minima and saddle points. Such an approach
has, however, serious limitations. The growing computational power allows us now to use
advanced simulation techniques to determine entropic effects accurately for medium-sized
systems at ab initio level. Recently, we have implemented free-energy simulation techniques
based on molecular dynamics, in particular on the blue-moon ensemble technique and on
metadynamics, in the popular DFT code VASP. In the thermodynamic integration (blue-moon
ensemble) technique, the free-energy profile is calculated as the path integral over the restoring
forces along a parametrized reaction coordinate. In metadynamics, an image of the free-energy
surface is constructed on the fly during the simulation by adding small repulsive
Gaussian-shaped hills to the Lagrangian driving the dynamics. The two methods are tested on a
simple chemical reaction—the nucleophilic substitution of methyl chloride by a chlorine anion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Computer simulations based on a quantum mechanical
description of the interatomic forces allow us to study
atomistic details of chemical processes. This allows us to
identify reaction mechanisms and important factors affecting
the reaction kinetics which are usually not accessible by
experimental techniques.

Until recently, ab initio studies of chemical reactions
were restricted to structural relaxations in which the important
stationary points on the potential energy surface (PES) such as
minima and saddle points were identified. In this approach,
the activation energy for a reaction is approximated by the
potential energy difference between the saddle point and the
corresponding minimum. Very often conclusions on the
reaction mechanisms have been made solely on the basis of
this parameter. The entropic effect is estimated using harmonic
transition state theory [1]. This can be adequate for simple
molecular reactions where only a few degrees of freedom
are modified during the reaction. In the case of complex
systems where soft degrees of freedom such as hindered
rotations and translations also undergo transformations during

the reaction, a more accurate treatment of entropic effects is
necessary.

Many techniques to compute free-energy profiles of a
reaction based either on Monte Carlo or molecular dynamics
have been proposed. An incomplete list of free-energy
methods includes umbrella sampling [2], thermodynamic
integration [3–7], metadynamics [8, 9], adiabatic molecular
dynamics [10], transition path sampling, [11] and transition
interface sampling [12]. In this paper we focus on two
methods recently implemented into the popular periodic
DFT code VASP [13–16]—thermodynamic integration and
metadynamics. The two methods are tested on a simple
chemical reaction—the nucleophilic substitution of methyl
chloride by a chlorine anion.

2. Methodology

2.1. Electronic structure calculations

Periodic ab initio DFT calculations have been performed using
the VASP code [13–16]. The Kohn–Sham equations have
been solved variationally in a plane-wave basis set using
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Scheme 1. Nucleophilic substitution of methyl chloride by a chlorine anion.
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Figure 1. Potential energy profile along the intrinsic reaction
coordinate as a function of the path length s.

the projector-augmented-wave (PAW) method of Blöchl [17],
as adapted by Kresse and Joubert [18]. The exchange–
correlation energy was described by the PW91 generalized
gradient approximation (GGA) functional [19, 20]. Brillouin-
zone sampling was restricted to the �-point. The plane-wave
cut-off was set to 205 eV.

2.2. Molecular dynamics simulations

Born–Oppenheimer molecular dynamics simulations were
carried out in the canonical NV T ensemble; the temperature
was controlled by a Nosé–Hoover thermostat [21, 22]. The
equations of motion were integrated with a time step of 1
fs. The reactants were placed into the center of a cubic
supercell with an edge length of 9.0 Å. In order to avoid
overall translations and rotations of the molecule, six Cartesian
coordinates (x, y, and z coordinates of carbon, x and y
coordinates of one and x coordinate of the other hydrogen
atom) have been fixed. The mass of the hydrogen atoms was
that of a tritium isotope so as to minimize thermal decoupling
of the high-and low-frequency modes.

3. Model reaction

The nucleophilic substitution (SN2) of chloromethane
(scheme 1) has been studied as a model reaction to test the per-
formance of the free-energy methods. This chemical reaction
has been the subject of many theoretical studies [23–34]. The
calculated reaction barrier depends strongly on the particular
method and basis set used. The values reported in literature
vary between ∼22 kJ mol−1 [29] and ∼90 kJ mol−1 [33]. The
potential energy profile along the intrinsic reaction coordinate

r1 r2

r3

Cl Cl’-C

H
H

H

Figure 2. Van der Waals complex between chloromethane and
chlorine anion. Three interatomic distances used to study the
free-energy surface of the SN2 reaction are shown.

Table 1. Selected internal parameters for the reactant and transition
state.

T = 0 K T = 300 K

Reactant Transition state Reactant

r1 1.85 2.35 1.84 ± 0.02
r2 3.15 2.35 3.40 ± 0.10
r1–r2 0.00 1.30 1.55 ± 0.10
r3 1.10 1.08 1.10 ± 0.01

(IRC) [35, 36], defined as the steepest descent path in mass
weighted coordinates that connects the transition state to reac-
tant and product, is shown in figure 1. The intrinsic reaction co-
ordinate has been determined using the damped velocity Verlet
algorithm [37]. The calculated reaction barrier, defined as the
potential energy difference between the transition state and the
stable reactant (van der Waals complex), is 36 kJ mol−1. This
value is close to the B3LYP calculations reported by Glukhovt-
sev et al [26] (31–36 kJ mol−1) and the MP2 calculations of
Streitwieser et al [27] (32 kJ mol−1). We stress, however, that
we have studied this reaction merely as a simple, yet realis-
tic model for testing the performance of free-energy methods.
Therefore, we do not address the question of the accuracy of
the density functional method used in this study.

The selected geometry parameters for reactant and
transition state as defined in figure 2 are collected in table 1. At
the minimum, the two C–Cl separations are r1 = 1.85 Å and
r2 = 3.15 Å, respectively, whereas the length of the C–H bonds
(r3) is 1.10 Å. The transition state is symmetric, with r1 =
r2 = 2.35 Å. The length of the C–H bond is slightly shortened
during the reaction; r3 decreases to 1.08 Å in the transition
state. In order to appreciate the effect of temperature on the
structural parameters and also to obtain a reference for further
discussion we have performed an NV T molecular dynamics
simulation at a temperature of 300 K. The total simulation time
was 65 ps, with the initial 5 ps serving for equilibration. The
finite temperature analogues of the geometric parameters of the
reactant were obtained as the maxima of histograms of the data
collected in the MD simulation (see table 1). Due to increased
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temperature, r2 increases to ∼3.4 Å, whereas r1 and r3 remain
almost unchanged. This result is consistent with calculations
of Yang et al [30], who found that the difference between the
two C · · · Cl interatomic separations grows from ∼1.3 Å for
T = 0 K to ∼1.5 Å for T = 300 K.

4. Thermodynamic integration

Suppose that the reaction coordinate can be approximated by
a single parameter ξ . The free-energy difference between two
states can be calculated using

�A1→2 =
∫ ξ(2)

ξ(1)

dξ

(
∂ A

∂ξ

)
ξ∗

(1)

as an integral over ( ∂ A
∂ξ

)ξ∗ , the free-energy gradient evaluated
at a fixed value ξ∗ of the reaction coordinate. The free energy
along the reaction path A(ξ∗) is related to the partition function
Q(ξ∗) by A(ξ∗) = −RT ln[Q(ξ∗)]. Therefore, a calculation
of the free-energy gradient requires first the evaluation of the
derivative of the partition function, ∂ Q

∂ξ
. The partition function

is defined by

Q(ξ∗) =
∫

dq
∫

dpq dpξ exp(−β H ), (2)

where the dynamical variables of the Hamiltonian for the
system with M degrees of freedom have been split into the
active coordinate ξ defining the reaction path, the inactive
coordinates q = {qi; i = 1, . . . , M − 1} and the associated
momenta pξ and pq . In the MD simulations, the reaction
coordinate is constrained to remain constant and equal to ξ∗,
and this requires the additional constraint ξ̇ = 0. Therefore,
during the MD simulation pξ is not sampled; a constrained
ensemble average over a quantity O is evaluated as

〈O〉ξ∗ =
∫

dq
∫

dpq O exp(−β H c
ξ∗)∫

dq
∫

dpq exp(−β H c
ξ∗)

, (3)

with the Hamiltonian

H c
ξ∗ = 1

2 pt
q Xpq + V (q, ξ). (4)

The mass-metric tensor X is defined as

Xα,β =
i=M∑
i=1

1

mi

∂qα

∂xi

∂qβ

∂xi
, α = 1, . . . , M − 1,

β = 1, . . . , M − 1. (5)

The unconstrained average is

〈O〉 =
∫

dq dξ
∫

dpqξ O exp(−β H )∫
dq dξ

∫
dpqξ exp(−β H )

, (6)

and the unconstrained and constrained Hamiltonians are
related via

H = H c
ξ∗ + pt

ξ (Y · pq) + 1
2

(
pt

ξ Z pξ

)
, (7)

with

Yα =
i=M∑
i=1

1

mi

∂ξ

∂xi

∂qα

∂xi
, α = 1, . . . , M − 1, (8)

and

Z =
i=M∑
i=1

1

mi

(
∂ξ

∂xi

)2

. (9)

Following Carter et al [4], constrained and unconstrained
ensemble averages are related through a ‘blue-moon’
correction

〈O〉 = 〈O Z−1/2〉ξ∗

〈Z−1/2〉ξ∗
, (10)

where the angular brackets 〈· · ·〉ξ∗ denote conditional thermal
averages with constrained coordinate ξ .

To constrain the system to remain on the reaction path
during the MD simulation, a modified Lagrangian with the
Lagrange multiplier λ associated with the reaction coordinate
is used:

L∗(x, ξ, ẋ) = L(x, ẋ) + λ(ξ(x) − ξ), (11)

where ξ is the desired value of geometric parameter ξ(x).
The SHAKE algorithm [38] can be used to determine

the Lagrange multipliers. It can be shown [4] that the free-
energy gradients ( ∂ A

∂ξ
)ξ∗ can be calculated using the Lagrange

multipliers via(
∂ A

∂ξ

)
ξ∗

= 1

〈Z−1/2〉ξ∗

〈
Z−1/2

[
− λξ

+ kBT (Z−1)

i=M∑
i=1

1

mi

∂ξ

∂xi

∂ Z

∂xi

]〉
ξ∗

. (12)

The choice of a proper order parameter which reasonably
approximates the reaction coordinate is a crucial point in the
blue-moon ensemble technique. For the model reaction we are
dealing with, a possible choice is the difference between the
two Cl · · · C interatomic separations, ξ = r1−r2, (see figure 2).
In order to determine the free-energy profile, gradients for
several different values of ξ covering the interval between the
reactant and transition states must be calculated. The free-
energy gradients from a simulation at T = 10 K are displayed
in the upper panel of figure 3. The free-energy minimum
and the saddle point are identified by vanishing free-energy
gradients. The minimum is located at ξ ∼ −1.3 Å, whereas the
transition state occurs at ξ ∼ −0.1 Å. The small asymmetry
of the transition state is most likely due to the fixed orientation
of the molecule in the simulation cell. As the molecule also
interacts with its periodically repeated images, the two chlorine
atoms feel slightly different environments and the symmetry is
broken.

In the lower panel of figure 3, free-energy profiles for
T = 10 and 300 K are compared with the potential energy
profile along ξ = r1 − r2. As the entropy contribution
is negligible at 10 K, the low temperature free-energy and
potential energy profiles almost coincide. At a temperature
of 300 K, the entropic effect becomes significant: the barrier
increases to ∼45 kJ mol−1 and the position of the minimum
shifts from ξ = ∼1.3 to ∼1.5 Å.

In this simple reaction it was not too difficult to choose a
single parameter which approximates the reaction coordinate
reasonably well. On the other hand, for more complicated
reactions the reaction coordinate is more complex and it
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Figure 3. Free-energy gradients (above) and free-energy profiles
(below) for the SN2 reaction obtained for two different simulation
temperatures. For the sake of comparison, the potential energy
profile along the r1 − r2 coordinate is shown.

is usually difficult to approximate it by just one internal
coordinate. Hence, it might be advantageous to define
the thermodynamic state via a vector of parameters ξ =
{ξk; k = 1, . . . , r}. The formula for the free-energy gradients
(equation (12)) can be generalized to [5–7](

∂ A

∂ξk

)
ξ∗

= 1

〈|Z|−1/2〉ξ∗

〈
|Z|−1/2

[
− λξk

+ kBT
j=r∑
j=1

(Z−1)k j

i=M∑
i=1

1

mi

∂ξ j

∂xi

∂|Z|
∂xi

]〉
ξ∗

, (13)

where Z is a mass-metric tensor:

Zα,β =
i=M∑
i=1

1

mi

∂ξα

∂xi

∂ξβ

∂xi
, α = 1, . . . , r, β = 1, . . . , r.

(14)
As suggested by Fleurad-Lessard et al [7], the free-energy

gradients can be used in free-energy optimizations in a similar
way as the potential energy gradients in static relaxations, i.e.
the standard optimization algorithms such as rational function
optimization (RFO) [39] and direct inversion of the iterative
subspace (DIIS) [40] can be used to determine free-energy

minima and transition states. The free-energy barrier is then
calculated as a path integral along an arbitrary path connecting
the two states:

�A1→2 =
∫ ξ(2)

ξ(1)

dξ ·
(

∂ A

∂ξ

)
ξ∗

. (15)

To demonstrate this method, we used the distances of
the two Cl ions from carbon, r1 and r2 (see figure 2), as
components of the reaction coordinate. We started the search
for the free-energy minimum from the parameters estimated
using standard unconstrained MD simulations at T = 300 K:
r1 = 1.84 Å, r2 = 3.40 Å, see section 3. By calculating
the corresponding free-energy gradients (equation (13)) and
performing a steepest descent optimization step we obtained
a configuration with r1 = 1.86 Å and r2 = 3.40 Å
with gradients well below 0.1 eV Å

−1
that we have used

as the optimization criterion. The parameter r1 − r2 is
−1.54 Å, which is consistent with the one-dimensional case
described above. To determine the saddle point we used the
partitioned RFO method [39]. The optimization has been
initialized with the parameters and Hesse matrix corresponding
to the zero-temperature saddle point (see table 1). During
the optimization, the Hesse matrix has been updated using
a weighted combination [41] of Powell–symmetric-Broyden
(PSB) [42, 43] and symmetric rank one (SR1) [44] formulas. In
only two relaxation steps the calculated free-energy gradients
decreased below the relaxation threshold of 0.1 eV Å

−1
. The

parameters r1 and r2 for the finite temperature transition state
are 1.37 and 1.39 Å, respectively. As in the one-dimensional
case, the transition state is slightly asymmetric due to the fixed
orientation of the molecule in the simulation cell. Our results
are in agreement with Yang et al [30], who found r1 = r2 =
1.39 Å for the free-energy transition state at T = 300 K.

Having identified two stationary points, we need to
define several states along a path connecting the minimum
with the transition state and calculate free-energy gradients
(equation (13)) and the path integral (equation (15)). As the
free energy is a state quantity, the result of the integral in
equation (15) is independent of integration path. Hence the
integration path can be chosen arbitrarily. We have calculated
the free-energy profiles by integrating along two different
paths (see figure 4, upper panel). As shown in figure 4, the
calculated free-energy barrier is ∼40 kJ mol−1 at T = 300 K,
independent of the integration path. On the other hand, the
free-energy barrier obtained using two collective variables is
lower compared to the one-dimensional case. In fact, the
two simulations are not expected to yield exactly the same
results, as the number of degrees of freedom contributing to the
entropy is different. The free-energy difference between two
states becomes more similar to the potential energy difference
with increasing dimensionality of the calculated free-energy
surface. In the extreme case when the dimensionality of the
free-energy surface reaches the number of degrees of freedom,
i.e. r = M , the free-energy and potential energy surfaces
become identical. This fact is sometimes overlooked in the
literature [7, 31].
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Figure 4. Two different paths in two-dimensional collective variable
space (above), and corresponding free-energy profiles for T = 300 K
(below).

5. Metadynamics

Metadynamics [8, 9] is a powerful method allowing to
determine multidimensional free-energy surfaces for chemical
reactions. Compared to the Lagrangian L0 for the standard
molecular dynamics, the Lagrangian for metadynamics
includes additional degrees of freedom driving the reaction:

L = L0 +
∑

α

1
2μα ṡ2

α −
∑

α

1
2 kα(Sα(x)− sα)

2 − V (t, s), (16)

where sα is the coordinate and ṡα the velocity of an extra
variable α with ‘mass’ μα . The fictitious coordinates are
coupled to the relevant geometrical parameters of the system
Sα(x) (collective variables) via harmonic springs with force
constants kα. The collective variables Sα(x) are chosen so as
to have significant components along the reaction coordinate.
The time-dependent bias potential V (t, s) driving the system
towards the product state consists of a superposition of
small Gaussian-shaped ‘hills’ with height H and width �W .
Gaussians are added to the bias potential with a time increment
tG , which is typically one or two orders of magnitude greater

than the time step used in the MD simulation:

V (t, s) =
�t/tG �∑

i=1

H exp

[
− |s − si |2

2(�W )2

]
. (17)

The bias potential is, in the limit of infinite simulation
time, related to the free energy [8, 9] via

A(S(x)) = − lim
t→∞ V (t, s) + const. (18)

Practical hints as how to adjust the five parameters used in
metadynamics (H , �W , tG , kα , μα) can be found in [31, 45].

In the first example we examine metadynamics with one
collective variable ξ = r1 − r2. The force constant and
fictitious particle mass were set to kα = 20 eV Å

−2
and μα =

100 amu, respectively. The total simulation time was 300 ps.
In order to avoid an undesired translation of chloride anion
too far from chloromethane, two large repulsive Gaussians
with H = 868 kJ mol−1 and �W = 0.5 Å, centered at
ξ = −3.0 Å and ξ = 3.0 Å, respectively, were added to
V (t, s) at the beginning of the simulation. In this way, the
sampling of the collective variable space was restricted to the
region −2.0 Å < ξ < 2.0 Å.

In principle, metadynamics is a non-equilibrium method.
It depends on the choice of the adjustable parameters, in
particular �W , H , and tG , to what extent the system is
driven out of equilibrium. It has been shown [45–47] that the
statistical error of the free-energy difference in metadynamics
is approximately proportional to

√
�W H/tg. Taking this fact

into account we can design two different strategies. One can
either update the bias potential frequently with small Gaussians
so that the system is often disbalanced, but always close to
equilibrium, or, alternatively, use large hills but leave the
system for a longer time to equilibrate. We have tested three
computational setups with fixed values of �W = 0.0794 and
H/tG = 6.65 × 10−3 kJ mol−1 fs−1, but with different values
of H (0.328, 1.312, and 6.560 kJ mol−1) and tG (50, 200, and
1000 fs). The free-energy difference between the expected
transition state (ξ = 0.0) and the reactant state (ξ = −1.5)
calculated for different simulation times is shown in figure 5.
In all three cases, the free-energy barrier does not converge
smoothly toward the expected value of 45 kJ mol−1 obtained
using thermodynamic integration; rather, it oscillates around
this value with fluctuations growing with H . Hence, in order
to minimize the statistical error it is necessary to keep the
system close to equilibrium. This example also shows that
a straightforward metadynamics simulation is not particularly
well suited for accurate free-energy calculations. Even in
the case of a simulation with the lowest value of H , the
fluctuations lead to time-dependent and usually asymmetric
reaction profiles. This is illustrated in figure 6, where several
estimates of the free-energy profiles computed using different
simulation times are shown. It has been suggested to terminate
simulation immediately after first recrossing the free-energy
maximum [48], i.e. immediately after accessing both the
reactant and the product states. In our best simulation (H =
0.328 kJ mol−1), the first recrossing event takes place after
adding 1292 hills. The corresponding free-energy profile is

5
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Figure 5. Metadynamics, time evolution of the estimated free-energy
difference �V (t, s) between states ξ = 1.5 Å and ξ = 0.0
corresponding to the free-energy minimum and transition state for
three different computational setups. The dashed line indicates the
value of the free-energy barrier calculated with thermodynamic
integration (45 kJ mol−1).

1292 hills, t=64.6 ps

2217 hills, t=110.9 ps

3871 hills, t=193.6 ps

5685 hills, t=284.3 ps

Figure 6. Metadynamics, estimated free-energy profiles upon adding
different numbers of hills with H = 0.328 kJ mol−1, �W =
0.0794 Å, and tG = 50 fs.

shown in figure 6. Obviously, this rather arbitrary strategy
not only does not solve the problem with an inaccurate free-
energy profile, it also introduces another source of error due
to the insufficient sampling of the region close to the dividing
surface (see figure 6). As shown by Ensing et al [31],
metadynamics can be efficiently combined with the umbrella
sampling method [2] to improve the accuracy of calculated
free-energy profiles. In this strategy, the potential V (t, s)
from metadynamics is used as a bias potential which enhances
sampling of regions with low statistical weights.

The metadynamics can also be formulated such that the
bias potential acts directly on the geometric parameters of the
system S(x), i.e.

V (t, S(x)) =
�t/tG�∑

i=1

H exp

[
−|S(x) − Si (x)|2

2(�W )2

]
, (19)

0 0.05 0.1 0.15 0.2 0.25
t (ns)

1

1.5

2

2.5

3

3.5

4

4.5

5

r 
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)

r
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r
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Figure 7. Time evolution of the parameters r1 and r2 chosen as the
collective variables in the 2D metadynamics. The parameters for
Gaussians added to the bias potential are H = 0.328 kJ mol−1,
�W = 0.0794 Å, tG = 50 fs.

and the Lagrangian is

L = L0 − V (t, S(x)) . (20)

In this formulation, the number of adjustable parameters
is reduced to three (H , �W , and tG). In the next example we
determine the free-energy surface for two collective variables
r1 and r2 (see figure 2). The adjustable parameters were
set to the same values as in the one-dimensional example
(H = 0.328 kJ mol−1, �W = 0.079 40 Å, tG = 50 fs).
The simulation temperature was 300 K. Once again, repulsive
Gaussians were added to V (t, S(x)) in order to avoid an
undesired collapse of the van der Waals complex. Because
of the repulsive potentials, the parameters r1 and r2 were
smaller than 3.8 Å during the whole simulation time. The time
evolution of r1 and r2 is shown in figure 7. Both the reactant
and the product well were filled completely after adding 2215
hills, almost twice as many as needed in the one-dimensional
case with the same values of adjustable parameters. The reason
is that the volume of the collective variable space that has
to be sampled increases with growing dimensionality of the
problem. Hence the simulation time necessary to explore
collective variable space increases. A contour plot of the free-
energy surface obtained after a simulation time of 300 ps is
shown in figure 8. The nudged elastic band method [49] was
used to obtain the free-energy analog of the intrinsic reaction
coordinate: Using a steepest descent algorithm two minima on
the free-energy surface were identified. Next, we defined a
‘string’ of 50 states in the collective variable space forming
a line connecting the two minima (figure 8, left). For each
image the system was relaxed in the subspace perpendicular
to the string until the sum of forces perpendicular to the string
was smaller than 10−5 eV Å

−1
. The relaxed string is shown

in the right panel of figure 8. The free-energy profile along
the relaxed string is shown in figure 9. Similarly as in the
simulation with one collective variable, the resulting free-
energy profile is slightly asymmetric.
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Figure 8. Contour plot of the free-energy surface obtained from metadynamics with two collective variables r1 and r2 (see figure 2). Initial
string obtained as linear interpolation between two minima (left) and converged string (right).
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Figure 9. Free-energy profile along minimum free-energy path on
the two-dimensional free-energy surface.

In section 4 we have briefly discussed the quantitative
difference between barriers obtained from the thermodynamic
integration with one and two collective variables. Similarly, the
barrier found by analysis of the two-dimensional free-energy
profile obtained using metadynamics is not, due to the different
number of degrees of freedom contributing to entropy, exactly
equivalent to the simulation with only one collective variable.
In contrast to thermodynamic integration, metadynamics offers
a simple way to relate results from simulations with different
numbers of collective variables. Using the relation between the
n − 1- and n-dimensional partition functions,

Q(q2, . . . , qn) =
∫ ∞

−∞
dq1 Q(q1, q2, . . . , qn), (21)

the correct lower-dimensional free-energy surface can be
obtained:

A(q2, . . . , qn) = −kBT

× ln

(∫ ∞

−∞
dq1 exp

[
− A(q1, q2, . . . , qn)

kBT

])
. (22)

In order to make this procedure useful, it is necessary
that all ‘important’ regions of the collective variable space are
sufficiently sampled.
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Figure 10. Contour plot of the free-energy surface obtained using
metadynamics with two collective variables r1 − r2 and r3

(see figure 2). The converged minimum free-energy path is shown.

As we have seen, the efficiency of metadynamics
decreases with an increasing number of collective variables
used in the simulation. On the other hand, as the true reaction
coordinate is often difficult to estimate for complex chemical
reactions, it is a useful property of metadynamics that it allows
us to identify those coordinates among the collective variables
which are inactive. In order to demonstrate this property we
have performed a simulation with two collective variables—
one being active (r1 − r2) and another inactive (r3), see
figure 2. The resulting contour plot of the free-energy surface
is shown in figure 10. Evidently, the minimum free-energy
path is, except for small fluctuations, a straight line parallel
to the r1 − r2 coordinate. The coordinate r3 only oscillates
around its equilibrium value of ∼1.10 Å and does not change
significantly during the reaction. Upon integrating components
perpendicular to the r1 − r2 coordinate,

A(r1 − r2) = −kBT ln

(∫ ∞

−∞
dr3 exp

[
− A(r1 − r2, r3)

kBT

])
,

(23)
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Figure 11. Comparison of the free-energy profiles along the r1 − r2

coordinate obtained using the thermodynamic integration (TI), and
metadynamics with two collective variables r1 − r2 and r3 (2D).

we obtain a free-energy profile equivalent to the one-
dimensional case. The resulting free-energy profile is
compared with that from thermodynamic integration in
figure 11.

6. Conclusions

We have examined two popular free-energy methods used
to determine reaction barriers. If the reaction mechanism
is known, thermodynamic integration allows an efficient
calculation of the reaction barrier as the collective variable
space has to be sampled only along the reaction coordinate.
The free-energy gradients can be used to determine minima and
saddle points in the collective variable space. The statistical
error can easily be controlled and simulations can be designed
such as to reduce the total error in the free-energy difference
below a prescribed threshold. The statistical error for the free-
energy barriers consists of two parts: (i) the error due to the
discretization of integral in equation (15) and (ii) the error due
to imperfect convergence of the free-energy gradients. The
first type of error can be reduced by use of a sufficiently
dense integration grid, especially in regions where integrand
changes rapidly. The error due to imperfect convergence of the
free-energy gradients can be estimated as the variance of the
gradients (note that the correlation between subsequent steps
in the MD simulation should be taken into account [50, 51])
and can be reduced by performing sufficiently long MD
simulations.

Metadynamics is a robust method which identifies the path
of least resistance in the collective variable space. Unlike
thermodynamic integration, metadynamics is able to explore
new mechanisms, provided an adequate set of collective
variables is defined. The statistical error in the free-energy
difference determined by metadynamics is related to the setting
of the adjustable parameters. Although qualitatively analyzed
by Laio et al [45, 47], to our knowledge, a reliable error
estimator which would allow us to quantify error at an arbitrary
stage of simulation is not available.
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